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Summary. A feasible alternative x is a strong Condorcet winner if for every other
feasible alternative y there is some majority coalition that prefers x to y. Let LC

(resp., ℘C) denote the set of all profiles of linear (resp., merely asymmetric) indi-
vidual preference relations for which a strong Condorcet winner exists. Majority
rule is the only non-dictatorial and strategy-proof social choice rule with domain
LC , and majority rule is the only strategy-proof rule with domain ℘C .
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1 Introduction

Given a set X of alternatives, we can specify a social welfare function f that de-
termines a binary relation on X as a function of individual preferences, or we can
specify a social choice rule g that selects a single member of X as a function of
individual preferences. May (1952) provided the first axiomatic characterization
of majority rule as a social welfare function. May’s characterization is based on
Independence of Irrelevant Alternatives, Neutrality, Anonymity, and a strong pos-
itive responsiveness axiom. Maskin (1995) substituted the Pareto criterion for the
last of these. He proved that any social welfare function satisfying the four ax-
ioms will fail to be transitive-valued at any individual preference profile at which
majority rule violates transitivity, and, unless it is majority rule itself, will fail to
be transitive-valued at some individual preference profile at which majority rule is
transitive-valued. This was also established by Campbell and Kelly (2000) with a
less demanding set of axioms.

� We are grateful to Wulf Gaertner and our two referees for insightful comments on a previous draft.
Correspondence to: D. E. Campbell
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The present paper characterizes the social choice rule g that selects the majority
rule winner. Taking our cue from Maskin, we posit a large domain of profiles and
then we show that majority rule is strategy-proof on that domain, and that no other
non-dictatorial social choice rule is strategy proof on that domain. The largest
conventional domain for which our proof is valid is the set of all n-tuples of linear
orders at which there is a strong Condorcet winner – i.e., an alternative that defeats
every other by a strict majority. Of course, we are loading the dice by employing
a large domain compatible with the existence of a strong Condorcet winner, but
doing so gives us a complement to Maskin’s social welfare function characterization
of majority rule. (We also assume an odd number of individuals. The conclusion
touches briefly on the possibility of extending our result to even n, and to domains
that allow individual indifference between distinct alternatives.)

We have a second strategy-proofness characterization of majority rule for finite
X: If we enlarge the domain by adding profiles at which at least one of the individual
relations has a three-term cycle at the top, but which still yield a strong Condorcet
winner, then majority rule is the only strategy-proof social choice rule. (For infinite
X , dictatorship is already ruled out within the set of all n-tuples of linear orders at
which there is a strong Condorcet winner, because for every individual i there will
be a profile in this set at which i’s ordering does not have a maximal alternative.)
Our interest in strategy-proofness under conditions that admit strict preference
cycles in individual preference relations is two-fold: First, because intransitivities
have shown up in laboratory experiments it is reasonable to ask how individual
preference intransitivity bears on the preference revelation problem. [See Chapter
7 in Thaler (1992) for a discussion of the experiments. It is noteworthy that Saari
(1994) employs intransitive individual preferences in his proof of Arrow’s theorem.]
Second, our result is a preliminary step in the investigation of domains on which
there is one and only one strategy-proof social choice rule. This paper shows that
one can identify domains on which majority rule is the unique strategy-proof rule.
We also exhibit a domain on which the unique strategy-proof rule is dictatorial.
(The domain of the Gibbard-Satterthwaite Theorem admits a different dictatorial
rule for each individual.)

Given a profile of (not necessarily acyclic) individual preferences, a feasible
outcome x is a strong Condorcet winner if for every other feasible alternative
y the number of individuals who strictly prefer x to y exceeds the number of
individuals who strictly prefer y to x. Let ℘C denote the set of profiles for which
a strong Condorcet winner exists, and let gC be the social choice rule that selects
the Condorcet winner on ℘C . It is easy to prove that no individual or coalition
can manipulate gC within ℘C : Suppose that the profile p of individual preferences
is such that x defeats every other alternative by a majority when everyone votes
according to his true preference scheme. If alternative y ranks above x in the true
preference ordering of everyone in coalition J , then x will defeat y by a majority,
no matter how the individuals in J vote (provided that no one in N\J changes her
reported preference relation), because x defeats y when everyone in J truthfully
declares his preference for y over x. Therefore, the outcome cannot be y when the
members of J misrepresent their preferences, and no one else does. We refer to this
as the folk theorem. The logic of the folk theorem obviously applies to any domain
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that is a subset of ℘C , but the argument depends crucially on the assumption that
both the profile of true individual preferences and the profile of reported individual
preferences belong to the family of profiles for which a strong Condorcet winner
exists.

We have said that gC is the only strategy-proof social choice rule with domain
℘C . What about dictatorship? It is not defined at every profile in that set: For
every individual i there will be profiles in ℘C at which i’s preference scheme does
not have a maximal alternative. (Suppose, for example, that p(i) is any binary
relation and there is an alternative x that is preferred to every other outcome for
everyone other than i. Then x is a strong Condorcet winner, and the profile belongs
to ℘C .) Therefore, a social choice rule with domain ℘C cannot always selects i’s
most-preferred alternative. Our second theorem implies that dictatorship cannot be
extended to ℘C without creating opportunities for advantageous misrepresentation.

Barberà, Massò, and Neme (1999) investigate the connection between strategy-
proofness and the size of the domain from quite a different standpoint. They
make the standard assumption that individual preferences are always transitive,
and then characterize the maximal domains on which an arbitrary generalized me-
dian voter scheme is strategy-proof; these maximal domains have a generalized
single-peakedness property. Berga (2002) proves a similar result in a continuous
multidimensional framework, and discusses related results.

The next section contains basic definitions and examples. Section 3 proves our
two main theorems, and Section 4 presents a simple dictatorship counterpart. The
last section offers some concluding remarks.

2 Definitions and two examples

N = {1, 2, ...., n} is the finite set of voters (n > 1) . A majority coalition is any
subset of N containing at least n+1

2 individuals. X is the feasible set of alternatives.
A(X) denotes the set of all complete and antisymmetric binary relations on X:
The relation � belongs to A(X) if and only if x �= y implies x � y or y � x,
but not both. We say that � in A(X) contains a three-term cycle if there are three
alternatives x, y, and z such that x � y � z � x. Let L(X) denote the set of
transitive members of A(X) – i.e., the set of linear orderings on X .

When we use (x, ...) to denote some member � of L(X) we are indicating that
x � y holds for all y ∈ X\{x}. We say that x is the maximal element of � in this
case, and sometimes write x =� [1]. Similarly, (x, y, ...) signifies that x =� [1]
and y � z holds for all z ∈ X\{x, y}, and we sometimes write y =� [2] when � is
the relation (x, y, ...). If y � z for all y ∈ X\{z} we write z =� [∞], and we will
use (x, ..., z) to indicate that x =� [1] and z =� [∞]. Of course these alternatives
will not exist for all members of A(X), and not even for all members of L(X)
if X is infinite. But for infinite X and any finite positive integer m there will be
members of L(X) such that alternative � [j] exists for j = 1, 2, ..., m, where we
set y =� [j] if x � y holds for exactly j − 1 members of X and y � z for all
z ∈ X\{ � [1], � [2], ...,� [j − 1]}.

A profile p is a function from N into A(X), and p(i) is the binary relation that
p assigns to i ∈ N . For any p ∈ A(X)N we will let �p

i also denote the relation



560 D. E. Campbell and J. S. Kelly

p(i), so that we can write x �p
i y if at profile p individual i strictly prefers x to y.

For convenience, we let L denote the set L(X)N . A (resolute) social choice rule
g : ℘ → X selects a member g(p) of X for each p ∈ ℘. The domain ℘ of g is a
subset of A(X)N . The range of g : ℘ → X is the set of x ∈ X such that g(p) = x
for some p ∈ ℘. We say that g is dictatorial if there is some i ∈ N such that
for all p ∈ ℘ for which p(i) has a maximal alternative, we have p(i)[1] = g(p).
We are ruling out individual indifference in this paper, and thus when an ordering
has a maximal alternative it will be unique. However, in defining dictatorship we
have taken into consideration the fact that we admit profiles for which there is no
maximal alternative for some individual’s preference ordering.

We say that x is a strong Condorcet winner at p ∈ A(X)N if x ∈ X and if for
every y ∈ X\{x} there is a majority coalition J such that x �p

i y for all i ∈ J .
Let ℘C represent the set of all profiles p ∈ A(X)N such that there is a strong
Condorcet winner at p. Let LC = L ∩ ℘C denote the set of all profiles of linear
orders at which there is a strong Condorcet winner. We define the social choice
rule gC on ℘C by setting gC(p) equal to the strong Condorcet winner, for arbitrary
p ∈ ℘C . If ℘ ⊂ ℘C , and ℘ is the domain of g, and g(p) = gC(p) for all p ∈ ℘ we
say that g is majority rule.

For any two profiles p and q in A(X)N define the standard sequence {rt : t =
0, 1, 2, ..., n} of profiles from p to q by setting r0 = p, and for t > 0 we let rt be
the profile for which rt(i) = rt−1(i) for all i �= t, and rt(t) = q(t). Informally,
a modified sequence from p to q with J first begins with p and at each stage t we
replace one individual relation from p with that same individual’s relation at q, and
we replace p(i) for every i ∈ J before replacing p(i) for any i ∈ N\J . Formally,
{rt} is a modified sequence from p to q with J first if J is a subset of N , and for
some one-to-one function π : N → N for which π({1, 2, ..., |J |}) = J we have
r0 = p, and for t > 0 the profile rt satisfies rt(i) = rt−1(i) for all i �= π(t), and
rt(π(t)) = q(π(t)). Even when r0 and rn both belong to LC we can have rt /∈ LC

for some t, because LC is not a product set. We will have to take care in choosing
r0 and rn in the proof to ensure that each rt belongs to the domain. (It is easy to
see why LC is not a product set: For any x ∈ X , any i ∈ N , and any relation � in
L(X), we have p ∈ LC if p(i) =� and p(j)[1] = x for all j ∈ N\{i}. Therefore,
if LC were a product set we would have LC = L(X)N , which is absurd.)

Although LC itself is not a product set, Sen (1966) uncovered a nice product
set that is contained in LC : If n is odd and S is a subset of L(X) then every p ∈ SN

has a strong Condorcet winner if and only if S is value restricted. A special case of
value-restrictedness is single-peakedness on the real line, and that also gives rise to
a product set domain. However, on that domain there are many non-dictatorial and
strategy-proof social choice rules, including gC . They are characterized by Moulin
(1980), whose results are extended in Barberà, Gul, and Stacchetti (1993).

Manipulation. We say that coalition J ⊆ N can manipulate the rule g : ℘ → X
at p ∈ ℘ via q ∈ A(X)J if the profile r for which r(j) = q(j) for all j ∈ J and
r(i) = p(i) for all i ∈ N\J belongs to the domain ℘ of g, and g(r)�p

jg(p) for all
j ∈ J . If J = {j}, a singleton, we say that individual j can manipulate g at p via
q(j).
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Strategy-proofness. We say that g : ℘ → X is strategy-proof if no individual
i ∈ N can manipulate g at any profile in ℘.

We have already demonstrated that gC : ℘C → X is not only strategy-proof,
it cannot be manipulated by any coalition. However, for any rule g : L → X such
that g(p) = gC(p) for all p ∈ LC , we can find p ∈ LC and r ∈ L, and i ∈ N , such
that r(j) = p(j) for all j �= i and g(r) �p

i g(p), as we show in Campbell and Kelly
(2002a). When we are referring to the strategy-proofness of a rule with domain ℘C

(resp. LC), we mean that the profiles of true and revealed preferences are both in
℘C (resp. LC). We will show that gC is the only strategy-proof rule on ℘C . But first
we will prove that majority rule is the only non-dictatorial and strategy-proof rule
on LC . In both cases we assume that there is an odd number n > 1 of individuals.
The importance of this is illustrated by Example 1, which shows that for two-person
societies there are many non-dictatorial and strategy-proof rules on LC .

Example 1. N = {1, 2} and X is finite. Profile p belongs to LC if and only if it
belongs to L and p(1) and p(2) have a common maximal element. In that case any
g : LC → X for which g(p) is a function of p(1)[1] = p(2)[1] is strategy proof.
(That is, we don’t necessarily have g(p) = p(1)[1], but g(r) = g(p) will hold if
r(1) and p(1) have the same maximal alternative.) To prove this claim, suppose
that p and r are any two profiles in L(X){1,2}. If p ∈ ℘C and p(i) = r(i) for
some i, then r ∈ LC if and only if the four relations r(1), r(2), p(1), and p(2) have
the same maximal alternative. Hence, an individual cannot manipulate because she
cannot report a preference relation with a different maximal element than the other
person’s reported preference. For that reason, there are many other types of rules
on LC that are strategy-proof when n = 2. For instance, g(p) = p(1)[2], the rule
that always selects person 1’s second ranked alternative.

The rule that ignores the preferences of the individuals in nonempty coalition J
and selects the strong Condorcet winner for the set N\J is strategy-proof. It does
not satisfy the hypothesis of our main theorem because it is not defined on all of
LC , as we now demonstrate.

Example 2 (Partial majority rule). Assume that n ≥ 5 and n is odd. Let L3
C be

the set of profiles in L such that there is a strong Condorcet winner for the society
{1, 2, 3}. In other words, for each profile p in L3

C there is an alternative x in X such
that for each y ∈ X/{x} there are at least two members of {1, 2, 3} who strictly
prefer x to y. Set g3

C(p) = x in that case. The rule g3
C is strategy proof, but it is

not defined on all of LC . For instance, any profile p ∈ LC for which p(i)[1] = x
for i > 2 is not in L3

C if all the members of X are part of a majority rule cycle for
the society {1, 2, 3}, but it does belong to LC . Theorem 1 implies that we cannot
extend g3

C to LC ∪ L3
C without creating an opportunity for manipulation by some

individual at some profile.

3 Two majority rule theorems

Recall that we are assuming away individual indifference between distinct alterna-
tives and are confining attention to the case of an odd number of individuals.
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Theorem 1. Assume that n > 1 is odd and X has at least three members. If X is
finite and g : LC → X is a strategy-proof and non-dictatorial rule with range X ,
then g is majority rule. If X is infinite and g : LC → X is a strategy-proof rule
with range X , then g is majority rule.

The proof of our theorem involves three steps. The first is a standard one: If
everyone reports a binary relation with x on top then x must be selected. The proof
is not standard because we have to make sure that each profile that we use belongs
to the domain LC . The middle (and longest) step shows that if g is non-dictatorial
then x will be selected when over half of the individuals have x as the maximal
element. Once we have established that, it will be easy to prove the final step,
showing that g coincides with gC on LC if X is infinite, or if X is finite and g is
not dictatorial. Note that if there is a majority coalition with a common maximal
alternative at profile p, then p obviously belongs to LC . In other cases we must
explicitly demonstrate that we have not left the domain LC .

Proof of Theorem 1. Let g be a strategy-proof rule with domain LC and range X .

Step 1. Let p ∈ LC be any profile that has x as the maximal element of p(i) for
all i ∈ N . We want to show that g(p) = x. We know that g(r) = x for some
r ∈ LC . Suppose that gC(r) = x. Then each member of the standard sequence
{pt} from r to p will belong to LC , for if x is a strong Condorcet winner for pt

then when we replace pt(t+1) with p(t+1), for which x is a maximal alternative,
alternative x must be a strong Condorcet winner for pt+1. Moreover, if g(pt) = x
but g(pt+1) �= x then individual t + 1 can manipulate g at pt+1 via pt(t + 1).
Therefore, induction and strategy-proofness give us g(p) = g(pn) = x.

Suppose, however, that gC(r) = y �= x. We cannot assume that each member
of {pt} belongs to LC , and we will have to employ another profile q ∈ LC such
that q(i) = (x, y, ...) for all i ∈ N . We will first show that g(q) = x. Set J =
{i ∈ N : x�r

i y}. Because x and y are distinct and p belongs to A(X)N we have
N\J = {j ∈ N : y�r

jx}. Let {rt} denote a modified sequence from r to q with
J first. N\J contains a majority of the members of N because y = gC(r). This
implies that rt ∈ LC for 0 ≤ t < n+1

2 because y still defeats every other member
of X by a majority at rt. And rt ∈ LC for t ≥ n+1

2 because x is the maximal
element of rt(i) for a majority of individuals i ∈ N when t ≥ n+1

2 . We know that
g(r0) = x. If g(rt) = x but g(rt+1) �= x then person t + 1 can manipulate g at
rt+1 via rt(t + 1), contrary to our supposition. Therefore, we have g(rt) = x for
t = 0, 1, 2, ..., n, so g(q) = g(rn) = x. Recall that p is an arbitrarily chosen profile
in LC for which x is the maximal element for all i ∈ N . Because x is a maximal
element of q(i) for each i ∈ N and g(q) = x, we can use the standard sequence
from q to p to establish that g(p) = x.

Step 2. Now we show that if g is non-dictatorial, we only need x to be a maximal
alternative for more than n

2 individuals to infer that g(p) = x. Let K = {i ∈ N : x
is maximal for p(i)}. We already know that g(p) = x if |K| = n. Now, suppose
that g(p) = x whenever |K| = k, for n+3

2 ≤ k ≤ n. We prove that g(p) = x if
|K| = k − 1, unless g is dictatorial.
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Suppose that alternative x is the maximal element for exactly k − 1 individuals
at p, namely the individuals in J . Suppose that g(p) = y �= x. We will show that
this implies that for every z in X there is a profile at which z is selected even though
k − 1 individuals have x as the maximal alternative at that profile. This will allow
us to prove that g is dictatorial, and hence we can conclude that g(p) = x if g is
not dictatorial. Assuming that g(p) = y �= x, if x �p

i y for some i ∈ N\J , then
the induction hypothesis implies that this individual i can manipulate g at p via an
ordering that has x as the maximal alternative. Then we must have y�p

i x for all
i ∈ N\J .

Let q be any profile in LC for which q(i) = p(i) for i ∈ J and q(i) = (y, x, ...)
for i ∈ N\J . Let {qt} be the standard sequence from p to q. We have g(q0) = y.
Moreover, g(qt) = y and strategy-proofness imply g(qt+1) = y, because qt+1 �= qt

implies t + 1 ∈ N\J , and hence y is a maximal element of qt+1(t + 1). Hence,
g(q) = g(qn) = y by induction.

Now, let r be any profile such that r(i) = (x, ..., y) for all i ∈ J and r(i) =
q(i) = (y, x, ...) for i ∈ N\J . Let {rt} be the standard sequence from q to r. Then
g(r0) = y. For any t, we have g(rt) ∈ {x, y} by the induction hypothesis, because
any i ∈ N\J can precipitate the selection of x by reporting any ordering with x
as the maximal element. Now, suppose g(rt) = y. If g(rt+1) = x then t + 1 ∈ J
and individual t + 1 can manipulate g at rt via rt+1(t + 1). Hence, g(rt+1) = y,
so we have g(r) = g(rn) = y.

Let ℘∗ denote the set of profiles s in LC such that s(i) = r(i) for all i ∈ J
and s(i) ∈ L(X) for all i ∈ N\J . Define g∗ by setting g∗(s) = g(s) for all s
in ℘∗. We will show that the range of g∗ is X . We know that g(r) = y = g∗(r).
Also, if h ∈ N\J , if r′(h) = (x, ...), and if r′(i) = r(i) for all i �= h we have
g(r′) = x = g∗(r′) by the induction hypothesis. Hence, x and y belong to the
range of g∗. Now, choose z ∈ X\{x, y}. Suppose s ∈ ℘∗ has s(i) = r(i) for
i ∈ J and s(i) = (z, y, ...) for all i ∈ N\J . Let {st} be the standard sequence
from r to s. We have g(s0) = y. Suppose that g(st) = y and g(st+1) �= z. Then
g(st+1) = y, otherwise individual t + 1 could manipulate g at st+1 via st(t + 1).
Therefore, either g(st) = y for all t, or else g(st) = z for some t. In the latter case
we know that z belongs to the range of g∗. Suppose, however, that g(st) = y for all
t. In particular, g(s) = y. Recall that for i ∈ J we have s(i) = r(i) = (x, ..., y).
We next show that g(s) = y leads to a contradiction in that case.

Let u be any profile in LC for which u(i) = (z, ...) for all i ∈ J and u(i) =
s(i) = (z, y, ...) for all i ∈ N\J . We have g(u) = z by Step 1. Let {ut} be the
standard sequence from s to u. For each t, either a majority of individuals have x
as the maximal element (as at s), or else a majority of the individuals have z as the
maximal element (as at u). We have g(u0) = y. If g(ut) = y and g(ut+1) �= y
then t + 1 ∈ J and individual t + 1 can manipulate g at ut via ut+1(t + 1). Hence,
g(ut) = y for all t, contradicting the fact that g(u) = z. Therefore, we have to
drop the supposition that g(st) = y for all t, and hence we must have g(st) = z
for some t. We have established that arbitrary z ∈ X belongs to the range of g∗.

We can use g∗ to induce a social choice rule for society N\J and domain
L(X)N\J in the natural way, and we also use g∗ to denote that induced rule.
The main result of Aswal, Chatterji, and Sen (1999) establishes the Gibbard-
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Satterthwaite Theorem for the domain L(X)H and arbitrary finite H . Therefore,
some individual h ∈ N\J is a dictator for g∗. We will show that h is a dictator
for g itself. This will establish that either g is dictatorial, or for every k > n

2 and
arbitrary p ∈ LC , if k individuals have a common maximal alternative then that
will be the alternative selected by g at profile p.

Choose any z ∈ X\{x, y} and v ∈ LC arbitrarily, except that v(h)[1] =
z, v(h)[2] = x, and for any i ∈ J we have v(i)[1] = x and v(i)[∞] = z. Let
v′ ∈ LC denote the profile for which v′(i) = r(i) for all i ∈ J and v′(i) = v(i)
for all i ∈ N\J . We have g(v′) = z because v′ ∈ ℘∗ and h is a dictator for g∗. If
{vt} is the standard sequence from v′ to v we have g(vt) ∈ {x, z} for all t because
individual h can precipitate the selection of x by reporting an ordering with x as
the maximal element – that would result in k individuals declaring x to be their
maximal alternative. We have g(v0) = z, and if g(vt) = z then g(vt+1) = z
because g(vt+1) = x otherwise, in which case t+1 ∈ J and individual t+1 could
manipulate g at vt via vt+1(t + 1). Therefore, g(vt) = z for all t. In particular,
g(v) = g(vn) = z. Because z = v(i)[∞] for all i in J and v(i) was arbitrarily
chosen for all i �= h in N\J (we could have v(i)[∞] = z), a standard sequence
argument will establish g(v′′) = z for all v′′ ∈ LC such that v′′(h)[1] = z. For
arbitrary z ∈ X\{x, y}, we can use the argument of this paragraph, but with the
roles of x and z reversed, to show that g(v′′) = x for any v′′ ∈ LC such that
v′′(h)[1] = x. Similarly, we can establish g(v′′) = y for any v′′ ∈ LC such that
v′′(h)[1] = y. Therefore, individual h is a dictator for g.

Step 3. We have established by induction that if g is not dictatorial then for arbitrary
x in X we have g(p) = x for any profile p in LC at which x is the maximal element
of the individual ordering of over half of the members of N . Assuming that g is non-
dictatorial, it remains to prove that g(p) = x if x defeats every member of X\{x} by
a clear majority at p. Suppose that this is true whenever l or more individuals have x
as the maximal element, but profile p has exactly �−1 individuals with p(i)[1] = x.
Suppose g(p) = y �= x. Then � < n+1

2 , and there exists i ∈ N such that p(i)[1] �= x
and x�p

i y. Let q be the same as p except that q(i) = (x, ...) ∈ L(X). We have
q ∈ LC . And g(q) = x by the induction hypothesis, in which case individual i can
manipulate g at p. Hence, we must have g(p) = x after all. Then g coincides with
gC on LC by induction on �.

All of the above is true whether X is finite or not. But if X is infinite then
we can prove that g cannot be dictatorial. Suppose to the contrary that it is dicta-
torial and that individual h is the dictator. Let v ∈ LC be such that v(h) has no
maximal alternative. Then there is some y ∈ X such y�v

hg(v). Because person
h can precipitate the selection of y by reporting a member of L(X) with y as the
maximal element and gC(v) second (the resulting profile will belong to LC), we
have contradicted the supposition that g is strategy-proof. �

The proof of Theorem 1 will go through with domains that are much smaller
than LC , but we have chosen to have an uncomplicated domain so the proof would
be fairly transparent. However, we do want to point out that in the case of infinite X ,
our proof that g : LC → X is majority rule if it is not-dictatorial will go through
even if we replace LC with Lm

C , for arbitrary finite m, where Lm
C is the set of
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profiles p in LC at which each individual i has a first-ranked alternative p(i)[1], a
second-ranked alternative p(i)[2], a third-ranked alternative p(i)[3], and so on up to
m. (One can easily verify this claim for Ll

C .) Restricting the domain to Lm
C would

give us a theorem for domains on which one can adapt the definitions of standard
social choice rules to the case of infinite X . For instance, there are a number of
ways to adapt the Borda rule to Lm

C . One way is to apply the standard definition to
the set

{p(1)[1], p(1)[2], ..., p(1)[m], p(2)[1], p(2)[2], ..., p(2)[m], ...,
p(n)[1], p(n)[2], ..., p(n)[m]}.

Then let g select the member of this set with the highest Borda score, using a
specific tie-breaking rule when necessary. The resulting social choice rule will not
be strategy-proof of course, but this version of Theorem 1 would establish that
there is no way of adapting a non-dictatorial rule to the infinite X case, unless it
is majority rule or the rule gives some individual an opportunity to manipulate at
some profile.

It may be instructive to compare Theorem 1 to the results of Moulin (1980):
Let X = {x, y, z} and for arbitrary w ∈ X let Lw denote the set of profiles
p in L such that w �= p(i)[3] for any i ∈ N . Then Lw is the set of profiles of
single-peaked preferences when x, y, and z are placed on the real line with w in
between the other two members of X . Moulin showed that the strategy-proof rules
on Lw are generalized median voter rules. (He did not restrict the cardinality of
X .) The salient case is majority rule, which can be defined on Lw as the rule that
selects the alternative in {p(i)[1], p(2)[1], ..., p(n)[1]} that is in the middle, when
the alternatives are positioned on the real line in a way that makes Lw single-peaked.
However, given a particular positioning of x, y, and z on the real line with w in the
middle, the rule gL that selects the left-most of the individual maximal alternatives
is also strategy-proof, as is the rule that selects the right-most alternative. Hence,
majority rule is not the only rule on Lw that is non-dictatorial and strategy-proof.
The set Lx is contained in our domain LC , but so are Ly and Lz . Consider the
family Ly , with x < y < z on the real line. Although gL is strategy-proof on Ly ,
it is not strategy-proof on LC , as we now show. Suppose n = 3 and that profile p
has p(1) = (y, ...) = p(2) and p(3) = (z, x, y). Then gL(p) = y. But if person
3 reports the ordering q(3) = (x, y, z) we will have gL(q) = x if q(1) = p(1)
and q(2) = p(2). Note that gL(q)�p

3gL(p) and that p and q belong to LC because
at both profiles alternative y is a maximal element for two individuals. However,
p does not belong to Ly . The fact that our domain is much larger than Moulin’s
accounts for the difference in the results. Moreover, if we replace LC with ℘C , then
majority rule is the only strategy-proof rule of any kind, as we now prove.

Theorem 2. Assume that n > 1 is odd and that X has at least three members. If
g : ℘C → X is a strategy-proof rule with range X , then g = gC .

Proof. The restriction of g to LC is obviously strategy-proof, and its range is
X by Step 1 of the proof of Theorem 1 because that argument is valid even if r
belongs to ℘C but not to LC . Therefore, Theorem 1 tells us that the restriction
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of g to LC is either dictatorial or majority rule. Suppose that the restriction of
g to LC is dictatorial and that individual h is the dictator. Let v ∈ ℘C be any
profile such that v(j) ∈ L(X) for all j �= h, v(h) ∈ A(X), and for three distinct
alternatives a, b, and c in X we have a�v

hb�v
hc�v

ha with y�v
hz for all y ∈ {a, b, c}

and z ∈ X\{a, b, c}. Then there is an alternative y ∈ X such that y�v
hg(v), and

so individual h can manipulate g at v by reporting a member of L(X) with y as
the maximal element and gC(v) second. We are forced to abandon the assumption
that the restriction of g to LC is dictatorial. The proof of Theorem 1 can now be
applied, with the understanding that g cannot be dictatorial, because the proof only
uses profiles in LC which is a subset of ℘C . Hence, the restriction of g to LC must
be majority rule. We conclude by proving that g = gC .

For arbitrary p′ ∈ ℘C let m(p′) denote the number of individuals i such that
p′(i) /∈ L(X). We know that g(p′) = gC(p′) if m(p′) = 0. Suppose that gC(p′) =
g(p′) whenever m(p′) ≤ m, but for p ∈ ℘C\LC we have m(p) = m + 1. Let
gC(p) = x, and g(p) = y. We will show that x = y. If p(i) /∈ L(X) and x�p

i y
then by the induction hypothesis, individual i can manipulate g at p via a member
� of L(X) such that �[1] = x. The resulting profile p′′ will obviously belong to
℘C and we will have x = gC(p′′) = g(p′′). This contradicts the assumption that
g is strategy-proof. Therefore, p(i) /∈ L(X) and x �= y imply y�p

i x. Choose any
such i and some q′′(i) ∈ L(X) such that q′′(i) = (y, x, ...). Set q′′(j) = p(j)
for all j �= i. We obviously have q′′ ∈ ℘C and x = gC(p′′). Then g(q′′) = x
by the induction hypothesis. Then individual i can manipulate g at q′′ via p(i),
contradicting the assumption that g is strategy-proof. Therefore, we can rule out
the possibility that x �= y. By induction on m, we have g = gC . �

The original draft of this paper only had Theorem 2. We are grateful to one of
our referees for asking a question that inspired Theorem 1.

4 The dictatorship counterpart to Theorem 2

For the domain L and finite X with at least three members, there are exactly n
different strategy-proof rules with range X; specifically, dictatorship of each of the
n individuals. If the domain is expanded to allow for individual indifference, then
there can be more than n dictatorial rules. However, there is only one strategy-proof
rule with domain ℘j = {p ∈ A(X)N : p(j) has a maximal element}, as we now
show.

Theorem 3. If X has at least three members and g : ℘j → X is a strategy-proof
rule with range X , then g is dictatorship of individual j.

Proof. Let g′ be the restriction of g to L. The rule g′ is obviously strategy-proof. A
simple standard sequence argument (with the sequence lying in ℘j) will show that
the range of g′ is X . Then g′ is dictatorial by the Gibbard-Satterthwaite Theorem.
Suppose that individual h �= j is the dictator. Let p be a member of ℘j such that
p(i) does not have a maximal element for any i �= j. Then there exists some x ∈ X
such that x�p

hg(p). Let q be any profile in ℘j such that q(i) = (g(p), ...) ∈ L(X)
for all i �= h, and q(h) = p(h). Let {qt} be a modified sequence from p to q with
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N\{h} first. We have g(q0) = g(p), and thus g(pt) = g(p) for all t ≤ n − 1.
But then individual h can manipulate g at pn−1 by reporting a member of L(X)
with x as the maximal element. (The resulting profile will belong to L.) Therefore,
individual j must be the dictator for g′. Finally, choose arbitrary p ∈ ℘j , with x
denoting p(j)[1]. Choose any q ∈ L such that p(i)[∞] = x for all i �= j and
q(j)[1] = x. We have g(q) = x, and thus a standard sequence argument will reveal
that g(p) = x. Therefore, individual j is a dictator for g. �

5 Conclusion

Our results are based on domains that are not product sets, and that means that
an individual cannot know if his reported preference ordering is admissible with-
out knowing what others will report. That limits the applicability of our results.
However, there is a sense in which results based on a domain of single-peaked pref-
erences have the same drawback: Although single-peaked domains can be defined
as product sets, single-peakedness is characterized by means of a particular linear
ordering, and an individual would have to know the linear ordering according to
which the reported preferences of other voters are admissible, before being con-
vinced that his own reported preference is admissible. Moreover, it is possible to
apply the definition of single-peakedness and value restriction to individual pro-
files, and in either case the condition implies the existence of a majority winner.
The collection of all single-peaked (resp., value restricted) profiles is not a product
set.

One implication of Theorem 1 is that the results of Moulin (1980) and of
Barberà, Gul, and Stacchetti (1993) are not robust to significant expansions in their
domains, even when the existence of a strong Condorcet winner is preserved. These
two papers characterize the family of strategy-proof and non-dictatorial rules on
the given domain – there are many members of the family, and each is a generalized
median voter scheme.

We wonder if the following is true: For arbitrary ℘ ⊆ A(X)N , if g : ℘ → X is
the only non-dictatorial and strategy-proof rule with domain ℘ and range X then
g is partial majority rule. (Partial majority rule ignores the preferences of some
(possibly empty) subset J of individuals, and applies majority rule to the society
N\J . Dictatorship is a special case.) There would be an immediate corollary: If g
has rangeX and is the only strategy-proof rule with domain℘ that is not independent
of the preferences of any individual then g always selects the strong Condorcet
winner. For both the conjecture and the corollary, one would have to include the
assumption that ℘ is a subset of A(X)N , otherwise serial dictatorship would provide
a counterexample. (Serial dictatorship selects the maximal alternative of person 1,
say, but if the maximal element is not unique then the preference relation of person
2 is used to eliminate one or more of the alternatives, and if the result is still not a
singleton set, use the preferences of person 3, and so on.)

We do not know if Theorem 1 goes through if there is an even number n ≥ 4
voters, or if individuals can be indifferent between distinct alternatives. In neither
case do we have an example of a rule that is strategy-proof, other than gC , nor do we
have a proof that gC is the only non-dictatorial and strategy-proof rule. However,
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for even n we have been able to prove that if g : LC → X is non-dictatorial and
cannot be manipulated by individuals or two-person coalitions then g is majority
rule. For n odd, the proof of Theorem 1 does not depend on invulnerability to
manipulation by coalitions of two or more persons. However, the hypothesis of
our theorem establishes that no coalition of any size can manipulate g because it
implies that g = gC , and no coalition can manipulate gC within ℘C .

Individual preference relations that are not transitive played a role in the proof
only for finite X , and then only when we eliminated dictatorial rules.

Obviously, the assumption that the range Xg of g is X is not essential to either
theorem. As long as Xg has three or more alternatives, the proofs go through with
Xg substituting for X . Campbell and Kelly (2002b) have a general theorem on
the addition of variables that included in the set of alternatives that are ordered by
individuals but which are never selected by the social choice rule.
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